2 research outputs found

    Control of Small Spacecraft by Optimal Output Regulation: A Reinforcement Learning Approach

    Get PDF
    The growing number of noncooperative flying objects has prompted interest in sample-return and space debris removal missions. Current solutions are both costly and largely dependent on specific object identification and capture methods. In this paper, a low-cost modular approach for control of a swarm flight of small satellites in rendezvous and capture missions is proposed by solving the optimal output regulation problem. By integrating the theories of tracking control, adaptive optimal control, and output regulation, the optimal control policy is designed as a feedback-feedforward controller to guarantee the asymptotic tracking of a class of reference input generated by the leader. The estimated state vector of the space object of interest and communication within satellites is assumed to be available. The controller rejects the nonvanishing disturbances injected into the follower satellite while maintaining the closed-loop stability of the overall leader-follower system. The simulation results under the Basilisk-ROS2 framework environment for high-fidelity space applications with accurate spacecraft dynamics, are compared with those from a classical linear quadratic regulator controller, and the results reveal the efficiency and practicality of the proposed method

    Latency Reduction and Packet Synchronization in Low-Resource Devices Connected by DDS Networks in Autonomous UAVs

    No full text
    Real-time flight controllers are becoming dependent on general-purpose operating systems, as the modularity and complexity of guidance, navigation, and control systems and algorithms increases. The non-deterministic nature of operating systems creates a critical weakness in the development of motion control systems for robotic platforms due to the random delays introduced by operating systems and communication networks. The high-speed operation and sensitive dynamics of UAVs demand fast and near-deterministic communication between the sensors, companion computer, and flight control unit (FCU) in order to achieve the required performance. In this paper, we present a method to assess communications latency between a companion computer and an RTOS open-source flight controller, which is based on an XRCE-DDS bridge between clients hosted in the low-resource environment and the DDS network used by ROS2. A comparison based on the measured statistics of latency illustrates the advantages of XRCE-DDS compared to the standard communication method based on MAVROS-MAVLink. More importantly, an algorithm to estimate latency offset and clock skew based on an exponential moving average filter is presented, providing a tool for latency estimation and correction that can be used by developers to improve synchronization of processes that rely on timely communication between the FCU and companion computer, such as synchronization of lower-level sensor data at the higher-level layer. This addresses the challenges introduced in GNC applications by the non-deterministic nature of general-purpose operating systems and the inherent limitations of standard flight controller hardware
    corecore